Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation.

نویسندگان

  • Dimitri Tolleter
  • Michel Jaquinod
  • Cécile Mangavel
  • Catherine Passirani
  • Patrick Saulnier
  • Stephen Manon
  • Emeline Teyssier
  • Nicole Payet
  • Marie-Hélène Avelange-Macherel
  • David Macherel
چکیده

Few organisms are able to withstand desiccation stress; however, desiccation tolerance is widespread among plant seeds. Survival without water relies on an array of mechanisms, including the accumulation of stress proteins such as the late embryogenesis abundant (LEA) proteins. These hydrophilic proteins are prominent in plant seeds but also found in desiccation-tolerant organisms. In spite of many theories and observations, LEA protein function remains unclear. Here, we show that LEAM, a mitochondrial LEA protein expressed in seeds, is a natively unfolded protein, which reversibly folds into alpha-helices upon desiccation. Structural modeling revealed an analogy with class A amphipathic helices of apolipoproteins that coat low-density lipoprotein particles in mammals. LEAM appears spontaneously modified by deamidation and oxidation of several residues that contribute to its structural features. LEAM interacts with membranes in the dry state and protects liposomes subjected to drying. The overall results provide strong evidence that LEAM protects the inner mitochondrial membrane during desiccation. According to sequence analyses of several homologous proteins from various desiccation-tolerant organisms, a similar protection mechanism likely acts with other types of cellular membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying.

Late-embryogenesis abundant (LEA) proteins are hydrophilic proteins that accumulate to a high level in desiccation-tolerant tissues and are thus prominent in seeds. They are expected to play a protective role during dehydration; however, functional evidence is scarce. We identified a LEA protein of group 3 (PsLEAm) that was localized within the matrix space of pea (Pisum sativum) seed mitochond...

متن کامل

Computational and Statistical Analyses of Amino Acid Usage and Physico-Chemical Properties of the Twelve Late Embryogenesis Abundant Protein Classes

Late Embryogenesis Abundant Proteins (LEAPs) are ubiquitous proteins expected to play major roles in desiccation tolerance. Little is known about their structure - function relationships because of the scarcity of 3-D structures for LEAPs. The previous building of LEAPdb, a database dedicated to LEAPs from plants and other organisms, led to the classification of 710 LEAPs into 12 non-overlappin...

متن کامل

Novel Mitochondria-Targeted Heat-Soluble Proteins Identified in the Anhydrobiotic Tardigrade Improve Osmotic Tolerance of Human Cells

Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA) proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (...

متن کامل

Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Amaranthus cruentus: An Intrinsically Disordered Protein Involved in Protection against Desiccation, Oxidant Conditions, and Osmotic Stress

Late embryogenesis abundant (LEA) proteins are part of a large protein family that protect other proteins from aggregation due to desiccation or osmotic stresses. Recently, the Amaranthus cruentus seed proteome was characterized by 2D-PAGE and one highly accumulated protein spot was identified as a LEA protein and was named AcLEA. In this work, AcLEA cDNA was cloned into an expression vector an...

متن کامل

Improved tolerance to salt and water stress in Drosophila melanogaster cells conferred by late embryogenesis abundant protein.

Mechanisms that govern anhydrobiosis involve the accumulation of highly hydrophilic macromolecules, such as late embryogenesis abundant (LEA) proteins. Group 1 LEA proteins comprised of 181 (AfLEA1.1) and 197 (AfLEA1.3) amino acids were cloned from embryos of Artemia franciscana and expressed in Drosophila melanogaster cells (Kc167). Confocal microscopy revealed a construct composed of green fl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 5  شماره 

صفحات  -

تاریخ انتشار 2007